Call Us+92 42 38977164
Email Ussupport@eskills.pk
Contact Us
Logo
  • Home
  • Courses
  • Referral Program
  • Apply For Certificate
  • Admission Process
  • Contact Support
LoginRegister
Logo
  • Home
  • Courses
  • Referral Program
  • Apply For Certificate
  • Admissions Process
  • Contact Support
LoginApply Now
AI & Data Science Intro

AI & Data Science Intro

About Course

This course covers the fundamentals of artificial intelligence, machine learning, and data science. You will learn key concepts, techniques, and tools used in AI and data science to analyze and manipulate data, build predictive models, and apply machine learning algorithms.


Learn the fundamentals of AI, machine learning, and data science for beginners.


Requirements

  • ✓Basic understanding of mathematics and statistics.
  • ✓A computer with internet access.
  • ✓Willingness to learn machine learning algorithms and data science techniques.

Course Curriculum


Section 1: What is YouTube

  • 1. What is Machine Learning

  • 2. Data Science Play Ground

  • 3. First Image Classifier

  • Assessment Exercise-01

Section 2: Data Science and Machine Learning

  • 4. Recommender System

  • 5. Data Science vs Machine Learning vs Artificial Intelligence

  • 6. Summarizing it all

  • Assessment Exercise- 02

Section 3: AI Project Life Cycle

  • 7. AI Project Framework

  • 8. Step-1 Problem Definition

  • 9. Step-2 Data

  • 10. Step-3 Evaluation

  • 11. Step-4 Features

  • 12. Step-5 Modelling

  • 13. Step-5 Data Validation

  • 14. Step-6 Course Correction

  • 15. Tools needed for AI Project

  • Assessment Exercise- 03

Section 4: Python the Most Powerful Language

  • 16. What is Programming Language

  • 17. Python Interpreter and First Code

  • 18. Python 3 vs Python 2

  • 19. Formula to Learn Coding

  • 20. Data Types and Basic Arithmetic

  • 21. Rule of Programming

  • 22. Mathematical Operators and Order of Precedence

  • Assessment Exercise- 04

Section 5: Python the Most Powerful Language Part 02

  • 23. Variables and their BIG No No

  • 24. Statement vs Expression

  • 25. Augmented Assignment Operator

  • 26. String Data Type

  • 27. String Concatenation

  • 28. Type Conversion

  • 29. String Formatting

  • 30. Indexing

  • 31. Immutability

  • Assessment Exercise- 05

Section 6: Python the Most Powerful Language Part 03

  • 32. Built in Function and Methods

  • 33. Boolean Data Type

  • 34. Exercise

  • 35. Data Structure and Lists

  • 36. Lists continued

  • 37. Matrix from Lists

  • 38. List Methods

  • 39. Lists Methods 2

  • 40. Creating Lists Programmatically

  • Assessment Exercise- 06

Section 7: Python the Most Powerful Language Part 04

  • 41. Dictionary

  • 42. Dic Key is Un Changeable

  • 43. Most Used Methods on Dictionaries

  • 44. Tuple Data Types

  • 45. Sets Data Types

  • 46. Intro to Process of Coding Conditionals

  • 47. if else Statement

  • 48. AND OR keywords

  • 49. Boolean result of Different values

  • 50. Logical Operators

  • Assessment Exercise- 07

Section 8: Python the Most Powerful Language Part 05

  • 51. Identity Operator

  • 52. for loop and Iterables

  • 53. Nested For loop

  • 54. Exercise for loop

  • 55. Range Function

  • 56. While Loop

  • 57. Continue Break Pass Keywords

  • 58. Exercise Draw a Shape

  • Assessment Exercise- 08

Section 9: Python Part-2

  • 59. Functions

  • 60. Why of Functions

  • 61. Parameter vs Argument

  • 62. Default Parameters

  • 63. Return Keyword

  • 64. Doc String

  • 65. Good Programming Practices

  • 66. args and kwargs

  • 67. Exercise

  • 68. Scope of a Function

  • 69. Scope Rules-1

  • 70. Scope Rules-2

  • Assessment Exercise- 09

Section 10: Python Part-3

  • 71. Global vs nonlocal Keywords

  • 72. Programming Best Practices-2

  • 73. Special Functions map

  • 74. Special Functions Filter

  • 75. Special Functions Zip

  • 76. Special Functions reduce

  • 77. List Comprehension Case-12 and 3

  • 78. Sets and Dictionary Comprehension

  • 79. Python Modules

  • 80. Python packages

  • Assessment Exercise- 10

Section 11: Environment Setup for Machine Learning Projects

  • 81. Who is Mr. Conda

  • 82. Tools for Data Science Environment

  • 83. Setting Up Machine Learning Project

  • 84. Blueprint of Machine Learning Project

  • 85. Installing conda

  • 86. Installing tools

  • 87. Starting Jupyter Notebook

  • 88. Installing for MacOS and Linux

  • 89. Walkthrough of Jupyter notebook 1

  • 90. Walkthrough of Jupyter notebook 2

  • 91. Loading and Visualizing Data

  • 92. Summing it Up

  • Assessment Exercise- 11

Section 12: Pandas for Data Analysis

  • 93. Tools needed

  • 94. Pandas and What we Will cover

  • 95. Data Frames

  • 96. How to Import Data

  • 97. Describing Data

  • 98. Data Selection

  • 99. Data Selection 2

  • 100. Changing Data

  • 101. Add Remove Data

  • 102. Manipulating Data

  • Assessment Exercise- 12

Section 13: NumPy

  • 103. What and Why of Numpy

  • 104. Numpy Array

  • 105. Shape of Array

  • 106. Important Functions on Arrays

  • 107. Creating Numpy array

  • 108. Random seed

  • 109. Accessing Elements

  • 110. Array Manipulation

  • 111. Aggregations

  • Assessment Exercise- 13

Section 14: NumPy Part 02

  • 112. mean variance and std

  • 113. Dot Product vs Matrix Manipulation

  • 114. Dot Product

  • 115. Reshape and Transpose

  • 116. Exercise

  • 117. Comparison Operators

  • 118. Sorting Arrays

  • 119. Reading Images

  • Assessment Exercise- 14

Section 15: Matplotlib

  • 120. matplotlib Intro

  • 121. First Plot with matplotlib

  • 122. Methods to Plot

  • 123. Setting up Features

  • 124. One Figure Many Plots

  • 125. Most Used Plots Bar plot

  • 126. Histogram

  • 127. Four plot one figure

  • 128. Pandas Data Frame

  • Assessment Exercise- 14

  • 129. Plotting from Pandas Data Frame

Section 16: Matplotlib Part 02

  • 130. Bar plot from Pandas Data Frame

  • 131. pyplot vs OO methods

  • 132. Life Cycle of OO method

  • 133. Life Cycle of OO method Advanced

  • 134. Customization Part-2

  • 135. Customization Part-3

  • 136. Figure Styling

  • 137. Naming Entire Figure

  • Assessment Exercise- 15

Section 17: Scikit-Learn

  • 138. What Actually ML Model is

  • 139. Intro to Sklearn

  • 140. Step-1 Getting Data Ready Split Data

  • 141. Step-2 Choosing ML model

  • 142. Step-3 Fit Model

  • 143. Step-4 Evaluate Model

  • 144. Step-5 Improve Model

  • 145. Step-6 Save Model

  • Assessment Exercise- 16

Section 18: Scikit-Learn Part 02

  • 146. What we are going to Do

  • 147. Step-1 Getting Data Split Data

  • 148. Step-1 Getting Data Ready Converting Part-1

  • 149. Getting Data Ready Converting Part-2

  • 150. Getting Data Anatomy of Conversion

  • 151. Getting Data Second Method of Conversion

  • 152. Getting Data Missing Values

  • 153. Getting Data Missing Values method 2

  • 154. Choosing Machine Learning Model

  • Assessment Exercise- 17

Section 19: Scikit-Learn Part 03

  • 157. Choosing Model for Classification problem

  • 158. Fit the Model

  • 159. Running Prediction

  • 160. Step-3 predict proba method

  • 161. Step-3 Running Prediction on Regression Problem

  • 162. Step-4 Evaluating Machine Learning Model Default Scoring

  • 163. Step-4 What is Cross Validation

  • 164. Step-4 Accuracy (Classification Model)

  • 165. Step-4 Area Under the Curve Part-1

  • 166. Step-4 Area Under the Curve Part-2

  • Assessment Exercise- 18

Section 20: Scikit-Learn Part 04

  • 167. Step-4 Area Under the Curve Part-3 Plotting

  • 168. Confusion Matrix Calculate

  • 169. Step-4 Confusion Matrix Plot

  • 170. Step-4 Classification Report Important concepts

  • 171. Step-4 Classification Report Fully Explained

  • 172. Step-4 R2 for Regression Problems

  • 173. Step-4 Mean Absolute Error for Regression Problems

  • 174. Step-4 Mean Square Error for Regression Problems

  • 175. Step-4 Scoring parameters for Classification

  • 176. Step-4 Scoring parameters for Regression

  • 177. Step-4 Evaluation using Functions Classification

  • 178. Step-4 Evaluation using Functions Regression

  • Assessment Exercise- 19

Section 21: Scikit-Learn Part 05

  • 179. Step-5 Improving Model by Hyperparameters

  • 180. Step-5 Improving Model by Hyperparameters manually

  • 181. Step-5 Hyperparameters Task-1

  • 182. Step-5 Evaluation Metrics in One Function

  • 183. Step-5 Hyperparameters Comparison

  • 184. Tuning Hyperparameters using RSCV

  • 185. Tuning Hyperparameters using RSCV Part-2

  • 186. Tuning Hyperparameters using GSCV

  • 187. Results Comparison

  • Assessment Exercise- 20

Section 22: Scikit Learn Part 06

  • 188. Save Load Model with Pickle Method-1

  • 189. Save Load Model with joblib Method-2

  • 190. Building Entire Model using Pipeline Part-1

  • 191. Building Entire Model using Pipeline Part-2

  • 192. Building Entire Model using Pipeline Part-3

  • 193. Building Entire Model using Pipeline Part-4

  • Assessment Exercise- 21

Section 23: Project-1 Part 01

  • 194. Milestone Project-1 Intro

  • 195. Creating Project Environment

  • 196. First 4 Steps

  • 197. Data Features Recognition

  • 198. Importing Tools and Libraries

  • 199. Exploratory Data Analysis Part-1

  • 200. Exploratory Data Analysis Part-2

  • Assessment Exercise- 22

Section 24: Project-1 Part 02

  • 207. Plotting Correlation Matrix Part-2

  • 208. Modelling Split the data

  • 209. Choosing the Right Model

  • 210. Improving Model

  • 211. Plotting the Improved Model Score

  • 212. Hyperparameter Tuning using GSCV

  • 213. Hyperparameters for RandomForestClassifier

  • 214. Running the model with Hyperparameters using GSCV

  • 215. Score Comparison after tuning

  • Assessment Exercise- 24

Section 25: Project-1 Part 03

  • 216. Hyperparameters Tuning Using Grid Search CV

  • 217. Summarizing

  • 218. What have we learnt

  • 219. Area under the curve and Confusion Matrix

  • 220. Plot the Classification report

  • 221. Let's see if Cross Validation layers help us

  • 222. Visualizing Cross Validation Score

  • 223. Features Improvement

  • 224. Conclusion

  • Assessment Exercise- 23

Section 26: Final Exam

  • Final Exam

AI & Data Science Intro

★ 4.7(150 reviews)
(500)
Enrolled
Beginner
Level
Urdu / Urdu
Language

What You Will Learn

  • ✓Understand the basics of AI and data science, and the difference between them.
  • ✓Learn to build basic machine learning models and perform data analysis.
  • ✓Familiarize yourself with key AI and ML concepts like algorithms, datasets, and model evaluation.
  • ✓Work with Python and popular libraries like Pandas and NumPy for data manipulation.
  • ✓Learn how to apply machine learning algorithms like regression, classification, and clustering.
  • ✓Understand the full life cycle of an AI project from problem definition to model deployment.
NVTTI Logo

Connect With Us

+92 42 38977164
support@eskills.pk

Links

  • •Home
  • •Courses
  • •Referral Program
  • •Apply For Certificate

Top Courses

  • •

    Motion Graphics with After Effects

  • •

    Video Editing Basics

  • •

    Canva Graphic Design

  • •

    Graphic Design Masterclass

  • •

    Blender 3D Design & Animation

Support

  • •Contact Support
  • •Admission Process
© All copyright reserved by Eskills Training Program